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Abstract

Methane and nitrous oxide are important greenhouse gases which show a strong in-
crease in atmospheric mixing ratios since pre-industrial time as well as large variations
during past climate changes. The understanding of their biogeochemical cycles can
be improved using stable isotope analysis. However, high-precision isotope measure-5

ments on air trapped in ice cores are challenging because of the high susceptibility to
contamination and fractionation.

Here, we present a dry extraction system for combined CH4 and N2O stable iso-
tope analysis from ice core air, using an ice grating device. The system allows si-
multaneous analysis of δD(CH4) or δ13C(CH4), together with δ15N(N2O), δ18O(N2O)10

and δ15N(NO+fragment) on a single ice core sample, using two isotope mass spec-
trometry systems. The optimum quantity of ice for analysis is about 600g with typical
“Holocene” mixing ratios for CH4 and N2O. In this case, the reproducibility (1σ) is 2.1 ‰
for δD(CH4), 0.18 ‰ for δ13C(CH4), 0.51 ‰ for δ15N(N2O), 0.69 ‰ for δ18O(N2O) and
1.12 ‰ for δ15N(NO+fragment). For smaller amounts of ice the standard deviation15

increases, particularly for N2O isotopologues. For both gases, small-scale intercali-
brations using air and/or ice samples have been carried out with other institutes that
are currently involved in isotope measurements of ice core air. Significant differences
are shown between the calibration scales, but those offsets are consistent and can be
corrected for.20

1 Introduction

The atmospheric mixing ratios of methane (CH4) and nitrous oxide (N2O) have in-
creased since pre-industrial time, which has contributed significantly to the increased
radiative forcing since 1750 (Forster et al., 2007). Furthermore, for both gases, large
variations are observed during past climate changes (Spahni et al., 2005). Numer-25

ous studies were performed to understand the atmospheric budget of CH4 and N2O in
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the past and to assess climate feedbacks of the natural sources in the climate system
(Lelieveld et al., 1998; Dlugokencky et al., 1998, 2009; Bousquet et al., 2006; Etheridge
et al., 1998; MacFarling Meure et al., 2006; Flückiger et al., 2002). Still the causes of
variability, in particular of the natural sources, are not well understood.

Isotope measurements can be used as a tool to distinguish contributions from indi-5

vidual sources (Brenninkmeijer et al., 2003) and changes in the sink strength. Mea-
surements from the recent past have been obtained from atmospheric measurement
networks (Quay et al., 1999; Miller et al., 2002), from archived air samples (Röckmann
and Levin, 2005) and from firn air (Bräunlich et al., 2001; Ishijima et al., 2007). To ob-
tain information on earlier atmospheric conditions, ice core air analyses are required.10

In that case, isotope measurements are particularly challenging, since only a small
amount of air is available and extraction artifacts can bias the analysis. Nevertheless,
the advent of continuous-flow isotope ratio mass spectrometry (IRMS) (Merritt et al.,
1995), has led to the development of numerous analytical systems that only require
small amounts of sample (e.g. Rice et al., 2001; Miller et al., 2002; Röckmann et al.,15

2003b; Brass and Röckmann, 2010) and subsequent analytical systems for ice core
analyses (Bernard et al., 2006; Schaefer et al., 2006; Ferretti et al., 2005; Sowers,
2001, 2006; Sowers et al., 2003; Bock et al., 2010b; Behrens et al., 2008). These de-
velopments have resulted in a number of interesting findings in the past years (Fischer
et al., 2008; Mischler et al., 2009; Sowers, 2001, 2006, 2010; Sowers et al., 2003;20

Bernard et al., 2006; Ferretti et al., 2005; Bock et al, 2010a; Schäfer et al., 1998) which
have, for example, ruled out a strong contribution of marine clathrate decomposition to
paleoatmospheric methane changes as observed in ice core air.

Ice extraction systems can be realized as wet extraction systems (after Robbins et
al., 1973; Craig and Chou, 1982), dry extraction systems (after Moor and Stauffer,25

1984; Etheridge et al., 1988) and sublimation techniques (Gülük et al, 1997, 1998;
Schmitt et al., 2011) each with their particular benefits and limitations. A drawback of
most of the analytical systems published to date is that they can only measure one
single compound per sample. Since ice air is limited and precious, we designed a
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system where at least two gases can be measured on one ice air sample, namely one
isotope signature of CH4 (δD or δ13C) and the complete isotopic composition of N2O
(δ15N(N2O), δ18O(N2O) and δ15N(NO+fragment)). The new method is suited for ice
samples of 200–800 g (for ice with mixing ratios of roughly 220–270 ppb for N2O and
600–700 ppb for CH4) corresponding to a minimum of ∼14–17 ng of CH4 and ∼15 ng5

of N2O for Holocene ice, allowing a high temporal resolution for ice core data.

2 Method

2.1 Experimental set-up

The complete analytical system is schematically shown in Fig. 1. A dry extraction
technique is coupled to two continuous-flow IRMS systems for simultaneous isotope10

analysis of CH4 and N2O. These parts will be described in detail in the following sub-
sections.

2.1.1 Extraction

The extraction device consists of a 6 L stainless steel (SS) pot equipped with a perfo-
rated SS cylinder with sharp edges, the so-called “ice-grater” (Etheridge et al. 1988),15

where an ice core sample is grated under its own weight by sliding back and forth over
the grater. The grater fits precisely between bottom plate and lid of the extraction pot
in order to avoid metal-metal collisions, which could lead to CH4 contamination (Higaki
et al., 2006). Moreover, the grater is coated with titanium nitride (TiN, BALINIT®A,
Oerlikon Blazers) in order to harden and protect the grating surface. Following the20

introduction of the ice sample into the grating cylinder, the SS pot is sealed with a cop-
per o-ring (conflat flange of 22 cm of diameter) and fixed in a shaking device inside a
freezer at −30 ◦C. From there, the pot can be evacuated to 10−3 mb via the vacuum
extraction system to remove laboratory air before grating starts. During the grating
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process, the shaker oscillates with a frequency up to 3Hz (see below) and with an
amplitude of about 6 cm. After 20 min of grating following an optimized protocol (see
below), 99 % of an ice core piece of 200–800 g has been ground into flakes of 1 to
2 mm diameter.

After the grating, the SS pot is reconnected to the vacuum extraction system (Fig. 1)5

and the air liberated from the ice is processed through Trap 1 (T1), which traps H2O
at −80◦C, and Trap 2 (T2), which traps CO2, N2O and most higher molecular weight
hydrocarbons at −196 ◦C, to Trap 3 (T3). T3 is filled with ∼40 ml of Hayesep D (mesh
80/100, Alltech GmbH, Germany), a molecular adsorbent, cooled to −196 ◦C in a liquid
nitrogen bath. This trap acts as a cryopump adsorbing all the air from the SS pot to T310

in 45 min. After extraction, the N2O–CO2 mixture trapped in T2 is flushed at ambient
temperature to the N2O IRMS in a Helium (He) carrier gas. Subsequently, T3 is heated
to 60◦C and its content is flushed in He to the CH4 IRMS. Both flushing units operate
independently.

2.1.2 Methane IRMS15

The CH4 IRMS system is a fully automated analytical set-up for δD(CH4) or δ13(CH4)
analyses (Brass and Röckmann, 2010). This system has been used for various labo-
ratory and atmospheric studies in the past (Vigano et al., 2008, 2009, 2010; Keppler
et al., 2006, 2008). For ice core-air measurements, the air trapped in T3 is flushed
through a 2 position Valco 6 port valve (V1) (VICI® AG International) to the preconcen-20

tration unit (PRECON) at a flow rate of 20 ml min−1. The PRECON of the CH4 IRMS
system consists of a 1/8′′ SS tube of which the central 6 cm are packed with Hayesep
D (mesh 80/100, Alltech GmbH, Germany). At −132 ◦C, the PRECON adsorbs CH4
while O2 and N2 are purged out to the vent. After 540 s of preconcentration, the cool-
ing is stopped, the PRECON system slowly warms up, and residual air is vented. Only25

shortly before the CH4 is released from the PRECON (at a temperature reading of
∼−75 ◦C), V1 switches to “inject”. The CH4 released is thus transferred to the CRY-
OFOCUS unit (Fig. 1), while other condensable gases are still retained on the Hayesep
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D. The CRYOFOCUS unit is a 1/16′′ gas chromatography (GC) column (Poraplot Q)
cooled to −158◦C where CH4 is focussed to obtain a narrow peak and remaining in-
terferences are separated and removed (Brass and Röckmann, 2010). Following the
CRYOFOCUS, CH4 is transferred through V2 to the conversion oven.

For δD measurements, CH4 is pyrolysed in an alumina (Al2O3) tube (0.8 mm inner5

diameter (i.d.), Length (L)=360 mm) at a temperature of +1300 ◦C. During pyrolysis,
CH4 is converted to hydrogen (H2) and carbon (C). C is deposited on the inner surface
of the alumina tube, which promotes an efficient pyrolysis and H2 production (Brass
and Röckmann, 2010).

For δ13C measurements, CH4 is combusted to CO2 in an alumina tube (1 mm i.d.,10

L=320 mm) at +900 ◦C. Three Nickel wires (0.25 mm outer diameter (o.d.), Goodfel-
low, Cambridge Ltd., England) are used as catalysts and introduced into the tube.
During each run, the combustion tube is flushed with O2 for 5 s to refresh the oxidant
before CH4 reaches the reactor.

The simultaneous analysis of both δD and δ13C is not possible, thus the system15

is running either in the pyrolysis or in the combustion mode. Following the pyroly-
sis/combustion step, the sample is transferred via an open split interface (ThermoFinni-
gan Gas Bench II, Germany) to the mass spectrometer (ThermoFinnigan Delta plus XL,
Germany).

2.1.3 Nitrous oxide IRMS20

The N2O IRMS used is a fully automated system based on (Röckmann et al., 2003b).
The sample (N2O, CO2 and hydrocarbons) from the extraction system is transferred
from T2 to the N2O PRECON in a He carrier gas flow at 50 ml min−1 for 400 s. As-
carite II(∼8–20 mesh, Aldrich chemistry, USA) is used to remove >99.999 % of the
CO2 and magnesium perchlorate (Mg(ClO4)2) removes the H2O formed in the reac-25

tion of CO2 with Ascarite. The N2O is then preconcentrated in a U-shaped SS tube
(1.2 mm i.d., L=480 mm) at −196 ◦C, while the residual air is vented. After 400 s, the
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sample is transferred to the CRYOFCOCUS, which consists of a fused silica capillary
(0.53 mm i.d., L=460 mm) cooled to −196 ◦C. After cryofocusing, the N2O is purified
from remaining CO2 and hydrocarbons on a GC column (PoraPLOT Q, 0.53 mm i.d.,
L=25 m) at +30 ◦C and then transferred via a NafionTM dryer to a custom-made open
split (Röckmann et al., 2003) and to the mass spectrometer (ThermoFinnigan, Delta5

Plus XP, Germany). There, the ion masses 44, 45, 46, 30 and 31 are monitored for
determination of δ15N(N2O), δ18O(N2O) and the position dependent 15N signatures
(δ15N(NO+fragment)) (Brenninkmeijer and Röckmann, 1999).

2.2 Measurement procedure

2.2.1 Sample preparation and evacuation of the pot10

The ice sample is cut with a band saw to the desired size and shape. Subsequently,
the sample is microtomed, weighed and inserted into the pre-cooled grating cylinder
inside the SS pot. The pot is the immediately fixed to the shaking device inside the
freezer at −30 ◦C and connected to the vacuum system via a 65 cm length SS flexible
bellows tubing (© Swagelok). Evacuation is usually performed overnight and a vacuum15

of 10−3 mb is reached. The pot containing a new ice sample is evacuated for at least
90 min.

2.2.2 Blank and standard measurement

To diagnose possible contamination and to monitor the stability of the analytical sys-
tem, a blank and a standard measurement are performed before each ice sample. A20

blank is also carried out after each sample. In the blank test, we flush pure carrier gas
(He) from the extraction system through T2 and T3 (heated to +60 ◦C) to both IRMS
systems and verify that neither CH4 nor N2O peaks appear in the system. In the stan-
dard measurements, about 20-50ml of reference air (NAT332, 2141 ppb CH4, 331 ppb
N2O) is filled into the SS pot containing the ice sample for the subsequent run (the pot25
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is evacuated beforehand). The reference air is then extracted like an ice air sample
(see next section). The blank and standard measurement ensure that the system is
thoroughly evacuated and in a reproducible state before starting with the ice sample.

2.2.3 Ice core air measurement

Following the standard measurement, the evacuated SS pot is disconnected from the5

extraction line and ice grating starts. During the first 2 min the frequency is slowly
increased to 1Hz and then in several steps to 3 Hz (Fig. 2). This is done manually, and
by listening, it is taken care that the ice sample does not knock against the walls (lids
and bottom) of the SS pot. After 20min of shaking, the SS pot is reconnected to the
glass-line and the transfer line is evacuated. T1 is cooled by an ethanol-liquid nitrogen10

mixture to −80 ◦C and T2 and T3 are cooled by liquid nitrogen to −196 ◦C. After closing
the valve between T1 and T2, the valve of the SS pot is opened and the pressure
is measured with a MKS Baratron pressure gauge (range 0–100 mb). This pressure
measurement (typically 5–10 mb) is used together with the weight of the ice sample
and of both CH4 and N2O peak areas to calculate the total amount of air in the ice and15

the gas mixing ratios. The extraction process starts by opening the valve between T1
and T2. The whole air sample is adsorbed on the Hayesep D in T3 within 45 min; the
valve after T3 is kept closed.

After 45 min, the pressure reaches (behind a water trap) 10−3 mb and does not de-
crease further. The valves separating the traps are closed and T2 is heated for 30 s in20

warm water (+60 ◦C) to release the trapped gases (mainly N2O and CO2). T3 is placed
in a warm water (+60◦C) bath for at least 20 min to enable complete release of CH4.
Thereafter, both IRMS systems are started simultaneously and the extracted samples
are transferred to the IRMS systems. After isotope measurement of the ice air sam-
ples, the glass line is not evacuated, but the second blank measurement as described25

above is conducted to verify that all the air had been transferred to both IRMS systems.
After the measurement, the SS pot is opened, cleaned with lens paper, filled with

new ice, sealed and reconnected to the shaker in the freezer for evacuation.
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When the two IRMS systems are not analyzing blanks, standards or samples from
the ice extraction system, they are automatically running air samples from laboratory
reference air cylinders (NAT325 for the CH4 IRMS and NAT335 for the N2O IRMS, both
filled with atmospheric air cylinders sampled in Groningen, NL) via the separate IRMS
systems. Every reference air measurement lasts about 30 min and those runs are used5

for data correction (see Sect. 3.5) and quality control of the system.

3 Optimization of the dry extraction system

Several parameters were optimized for the new dry extraction system in order to ensure
the most precise and reproducible stable isotope measurements.

3.1 Grating efficiency10

We optimized the grating efficiency by adjusting the duration, position and frequency
of the shaking and the shape of the ice sample in order to have the largest quantity of
ice grated in the shortest amount of time. Twenty-two ice core samples (half or quarter
cylinders) of 6 to 18cm of length and between 200–800 g weight were introduced into
the grater and shaken at frequencies varying from 0 to 3 Hz (Fig. 2). During the shaking15

tests, the pot was opened every 5min and the remaining (i.e. non-grated) ice samples
were weighed to evaluate the grating efficiency. Fig.2 shows the results of the grating
tests. It appears that under optimal conditions, (with two half cylinders of 12cm length
and at a frequency of 0–3 Hz) 88 % of the ice sample was grated after 10min and 99 %
after 20min. The amount of ice introduced into the shaker is not a critical parameter,20

however, the shaking frequency and the position of the samples in the grater are im-
portant. When shaking is started at 3 Hz, a strong knocking against the walls of the
SS pot can be heard, which could potentially damage the oxide layer of the SS surface
and lead to CH4 production (Higaki et al., 2006). Furthermore, strong collisions with
the wall break the ice sample into small pieces, which decreases the grating efficiency.25

4482

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/4/4473/2011/amtd-4-4473-2011-print.pdf
http://www.atmos-meas-tech-discuss.net/4/4473/2011/amtd-4-4473-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
4, 4473–4503, 2011

Simultaneous stable
isotope analysis of

methane

C. J. Sapart et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Therefore, the frequency of shaking is increased slowly to 1Hz during the first 2 min,
maintained at 1Hz for 4 more min and then increased gradually again to 3 Hz (Fig.2).
Moreover, the SS pot can be fixed in the shaking device in different position from the
horizontal to the vertical position. For the first 5–10 min of shaking, the pot stays in a
horizontal position (angle (a)=0), thereafter it is rotated to an angle (a) of 30 ◦. This al-5

lows a more efficient grating of the small remaining pieces. For large samples (>500 g),
the grating angle is maintained at a=30 ◦ during the entire grating process to prevent
the ice to knock strongly against the lid of the SS pot. The typical diameter of the grated
ice flakes is about 1–2 mm and >97 % of the air is extracted while grating bubbly ice.

3.2 Extraction procedure10

Extraction of air from the grating pot is a critical step. Since the extraction takes long,
it was decided not to pump through a CH4 adsorption agent with a vacuum pump, but
to use a larger quantity of adsorption agent as cryopump. To find the most suitable
adsorption agent, several grams of molecular sieve, activated carbon or Hayesep D
were filled into separate 100 ml glass bottles, thoroughly outgassed and used to adsorb15

different amounts of reference air from the SS pot. Hayesep D appears to be the most
efficient and reproducible adsorbent. Consequently, in the final design we used a glass-
line provided with a 70 ml U-shaped Hayesep D trap (T3).

The N2O is completely trapped in a U-shaped glass tube (12 mm o.d., L=250 mm)
immersed in liquid nitrogen (−196 ◦C), and is released when heated to room tempera-20

ture. It was verified that no N2O is trapped in T1 or T3 or remains in T2 after sample
transfer to the isotope system by measuring the N2O mixing ratios from these traps
after a normal sample analysis.

3.3 Tests with bubble-free ice

In order to assess potential contamination during the grating-extraction process, nine25

bubble free (BF) ice samples were analyzed. Those BF ice samples were produced
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by introducing Milli-Q water in plastic tubes of 15 cm length and 12 cm of diameter. A
slow He flow was then bubbled through the water to purge out air. Subsequently, the
plastic tube containing the water was slowly immersed in an ethanol-liquid nitrogen
mixture at about −80 ◦C in order to slowly freeze the water from the bottom to the top.
Those BF ice samples were then grated in the SS pot containing 20–50 ml of reference5

air. It should be noted that although this BF ice does not contain air, it is softer than
deep ice core ice so that the might not be exactly identical to real ice core sample.
After the grating procedure, the reference air from the SS pot was extracted like an ice
air sample and CH4 mixing ratios were measured from T3 on a GC-Flame Ionization
Detector (FID, GC8000top, CE instruments). In parallel, the reference air cylinder was10

analyzed directly on the GC-FID in order to verify that the extracted air had the same
mixing ratio as measured directly from the cylinder. The results show no detectable
difference, which indicates that no significant contamination occurs during the grating-
extraction process.

3.4 System reproducibility15

More than forty reproducibility tests were conducted by extracting and analyzing be-
tween 20 and 100 ml of reference air (NAT332, 2141 ppb CH4, atmospheric air cylinder
from Groningen) from the SS pot either filled with leftover grated ice samples or empty.
NAT332 was regularly measured directly on both IRMS systems as well. The aver-
age differences between the isotope signature of NAT332 measured directly on both20

IRMS systems and extracted from the grating pot shows slight offsets of 0.13 ‰ for
δ13C(CH4), 0.5 ‰ for δD(CH4), 0.18 ‰ for δ15N(N2O), 0.54 ‰ for δ18O(N2O), 0.52 ‰
for δ15N(NO+fragment) (Table 1). Those small offsets are constant and daily monitored
with the standard measurements. For ice core samples, the reproducibility for different
amounts of ice is presented in Table 2. The amount of air remains a limiting param-25

eter for reliable N2O measurements. Air released from 200 g and 350 g of ice (with
mixing ratios of 600–700 ppb for CH4 and 220–270 ppb for N2O) is enough for high
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precision measurements for δ13C(CH4) and δD(CH4), respectively, but for this amount
the precision is not very high for the N2O isotope signatures. An increase of the sample
size to about 600 g leads to a strong reduction of the error also for N2O isotopologues
(Table 2).

3.5 Data correction5

The isotope analyses are performed on a ThermoFinnigan Delta plus XL IRMS (for CH4
isotopologues) and on a ThermoFinnigan XP IRMS (for N2O isotopologues). Running
gas peaks of pure CO2, H2 and N2O bracket the sample peak for direct referencing
to eliminate short-term shifts in IRMS performance. This raw δ-value from the chro-
matogram is evaluated with the ISODAT software and is then compared to the daily10

mean value of reference air measurements on both IRMS systems to obtain the δ
value of the sample versus the reference air, δSAMvsREF. These values are then cor-
rected for non-linearity when needed (see below). The reference air cylinders have
been independently calibrated versus international standards as explained in Brass
and Röckmann (2010) and Kaiser et al. (2003).15

Linearity tests are performed at least twice a week on both IRMS systems by running
twenty-five analyses of various volumes (5 to 40 ml for the CH4 IRMS and 20 to 333 ml
for the N2O IRMS) of reference air NAT335 (for N2O IRMS, 326 ppb) and NAT325 (for
CH4 IRMS, 1970ppb) covering the investigated sample range. Those linearity runs are
used to monitor the quality of the analytical systems and the stability of the measure-20

ments for small peak areas.
The N2O IRMS system shows non-linearity patterns for δ15N(N2O) (Fig. 3a) and

δ15N(NO+ fragment) (Fig. 3c), but not for δ18O(N2O) (Fig. 3b). To solve this issue,
about ten runs with reference air (NAT335) are performed before the ice core air mea-
surement injecting 333ml of NAT335 reference air in order to reach peak areas corre-25

sponding to zone C (highest precision zone). The average of those ten runs is defined
as δREF C. The ice core air sample is related to δREF C in order to obtain δSAMvsREF. In
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order to correct for the non-linearity, about ten reference air runs are performed cover-
ing exactly the same peak area as the ice sample measured beforehand (Fig. 3). The
average of those ten runs is δREF lin. The linearity correction (Lin corr) corresponds to
δREF C −δREF lin. To obtain the final δ value, we add Lin corr to δSAMvsREF. Zone A
corresponds to ∼350–480 g of ice samples and zone B to ∼500–700 g of ice (Table 2).5

For N2O isotopologues, the error (standard deviation) decreases by at least 20 % (de-
pending on the isotope) from zone A to zone B. We preferentially measure ice samples
in zone B, which is a compromise between good precision and economic use of ice
(equivalent to possible high temporal resolution).

The CH4 IRMS system shows non-linearity patterns (Fig. 4a, b) as well. The correc-10

tion procedure is similar for N2O isotopologues, but the number of runs before and after
the ice core air run is about six. The amount of ice is less critical for CH4 isotopologues,
because even when measuring ice in zone A, the reproducibility remains good.

4 Intercomparison

No internationally accepted isotope reference materials are currently available for the15

isotopic composition of CH4 and N2O, so different laboratories use different local labo-
ratory reference materials. Therefore, results from different laboratories are generally
not directly comparable. Several laboratories are presently involved in isotope mea-
surements of CH4 and N2O from the NEEM ice core (North Greenland Eemian Ice
Drilling program). As a first step towards characterizing the offset between these lab-20

oratories, a small number of air and ice samples were exchanged between Utrecht
University and the other laboratories. For CH4 isotope analysis, air and ice samples
were exchanged with the Pennsylvania State University (PSU), the University of Bern
(BERN) and the Alfred Wegener Institute for Polar and Marine Research in Bremer-
haven (AWI). For N2O isotope analysis, three air samples were exchanged with the25

Center for Ice and Climate in Copenhagen (CIC). A larger intercomparison exercise,
led by the PSU group, is currently being carried out with many more laboratories.

4486

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/4/4473/2011/amtd-4-4473-2011-print.pdf
http://www.atmos-meas-tech-discuss.net/4/4473/2011/amtd-4-4473-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
4, 4473–4503, 2011

Simultaneous stable
isotope analysis of

methane

C. J. Sapart et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.1 Methane intercomparison

Electropolished 2 L stainless steel cans were used for the isotope analysis, similar to
those used for air sampling on aircraft and subsequent isotope and trace gas analy-
sis (Kaiser et al., 2006, Laube et al., 2010). For comparison with the PSU lab, three
archived firn air samples were used. Two samples (IMAU402 and IMAU724) from the5

1999 drilling at Dome C, Antarctica (Bräunlich et al., 2001) and one sample from Sval-
bard (IMAU490). The fourth sample corresponds to highly enriched CH4 (IMAU403).
For the intercomparison with BERN two continental whole air samples (NAT325 and
NAT332) were collected in Groningen, the Netherlands, and used as laboratory refer-
ence gases at IMAU. One of them (NAT332) contains a significant CH4 contamination10

(mixing ratio 2141 ppb). By combining firn air samples with clean and contaminated
recent air samples, the air samples cover a range of ∼1.5 ‰ in δ13C and ∼35 ‰ in
δD. The very enriched sample (IMAU403) has a 13C content far outside the range of
tropospheric values, but it has been included to assess potential differences in the δ
scale, which is relevant since most laboratories only use a one-point calibration for CH415

isotopologues. The ice core samples were from Greenland (B30 core, ∼1750 AD), and
from Antarctica (B34 core, ∼250 AD), provided by AWI and analyzed by BERN, IMAU
and AWI, respectively. In addition we used ice from the WAIS divide drilled in 2005 in
Antarctica (WDCO5A, ∼1550 AD) provided by PSU and analyzed by PSU and IMAU.

Results of the CH4 intercomparison are summarized in Table 3. For the three firn air20

samples analyzed by IMAU and PSU (first three lines in Table 3), there is an average
offset of δ13C(CH4)=0.28±0.03 ‰ and δD=12.1±1.5 ‰. This difference is very re-
producible, indicating that it is likely due to an offset in calibration scales between the
two laboratories. For the WAIS ice core samples (last line in Table 3), the difference
is identical for δD (12.4 ‰), but it increases for δ13C to 0.51 ‰. This effect is larger25

than the reproducibility established for our new system. It is in the same direction, but
slightly larger (∼0.1 ‰) than the difference between air measured directly and extracted
from the ice grating device as shown in Table 1. The difference of the IMAU δ13C(CH4)
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measurements and the results from BERN on ice core air is similar (0.52 ‰), but the
difference to AWI is much smaller (0.11 ‰). Unfortunately, no air comparison samples
are available for comparison between IMAU, and these two laboratories. For δD(CH4),
the results from the IMAU and BERN systems agree very well for both air and ice
measurements and the differences are well within the combined error.5

The results show that significant scale differences between the individual laborato-
ries exist, which need to be accounted for when comparing data. The difference in
offset between IMAU and PSU for air and ice samples indicates that the problem might
aggravate when the ice extraction systems is included in the intercomparison. This
may be attributed to the difference between the extraction devices used. The IMAU10

data were obtained with a dry extraction system as described above and the other lab-
oratories use different wet extraction techniques (e.g. Behrens et al., 2008, Bock et al.,
2010b, Sowers, 2010).

Concerning the enriched sample (IMAU403), the offset between IMAU and PSU is
not consistent with the average offset of the firn air samples. The change in offset is15

0.8 ‰ over a range of ∼20 ‰. The results suggest that future international calibration
efforts should aim for at least a two-point calibration strategy for CH4 isotopologues,
where a scale difference can be calibrated like for water isotopologues (SMOW-SLAP-
scale). The presented data are only a first step showing the existence of significant
differences for δ13C(CH4).20

The reported differences between different laboratories can be larger than the re-
ported uncertainties of individual laboratories. This means that isotope variations along
a polar ice core can be studied consistently and with high precision with one analytical
system, but comparisons between datasets should take into account these differences.

An important issue is that possible offsets are constant and do not vary in time,25

which could be monitored by regularly measuring similar ice core samples. In addition,
regular comparisons between wet and dry extraction methods may be used to assess
long-term stability of the extraction procedure, and such measurements have been
initiated in our laboratory.
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4.2 Nitrous oxide intercomparison

For N2O, no ice samples have been compared between laboratories yet, but three
air cylinders (one with background tropospheric air and two with synthetic air mix-
tures) have been measured at least five times per cylinder by both IMAU and CIC
for δ15N(N2O) and δ18O(N2O) (Fig. 5). The gases were selected in order to have a5

wide isotopic spread. The cylinder with tropospheric background air was sampled at
the NEEM deep drilling site in July 2008. For the intercomparison study, the cylinder of
NEEM tropospheric background air was used by both laboratories as the reference and
isotopes are reported to be consistent with these predicted values. The mean differ-
ence between the two laboratories is 0.11 ‰ for δ15N(N2O) and 0.05 ‰ for δ18O(N2O),10

which demonstrates an excellent agreement between IMAU and CIC for air samples.
Once the CIC ice system becomes operational, ice core air intercalibration will be per-
formed.

5 Conclusion

A new dry extraction technique coupled to two IRMS systems for simultaneous CH4 and15

N2O isotope analysis has been developed for high-precision isotope measurements of
ice core air. The minimum amount of preindustrial ice (with CH4 mixing ratios of about
600–700 ppb and N2O mixing ratios of about 220–270 ppb) necessary for measure-
ments of both gases is 350g, but in order to increase reproducibility, we preferentially
measure samples of about 600 g. For these amounts, the reproducibility is 2.1 ‰ for20

δD(CH4), 0.18 ‰ for δ13C(CH4), 0.51 ‰ for δ15N(N2O), 0.69 ‰ for δ18O(N2O) and
1.12 for δ15N(NO+fragment). Possible small offsets during the extraction of air from
the grating device are smaller than the presently existing uncertainties of the CH4 and
N2O isotope scales for all signatures. Results from a small-scale intercalibration exer-
cise for air and ice samples with five external laboratories (BERN, PSU, CIC and AWI)25

reveal significant offsets between the laboratories. Future attempts for harmonization
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of the CH4 isotope scale should provide at least a two-point calibration scale. Despite
these open issues on calibration, the excellent reproducibility will allow the new analyt-
ical system to investigate in detail the past atmospheric budget of CH4 and N2O with
relatively high temporal resolution allowing reconstructing changes in the sources and
sinks.5
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Table 1. Results from tests with the extraction system. Each value represents the mean ±1σ
standard deviation of >40 measurements of different amount (20–100 ml) of the same reference
air (NAT332, 2141ppb CH4, 331 ppb N2O). The first row corresponds to reference air directly
measured on the two IRMS systems. The second row corresponds to the measurement of
reference air introduced into the SS pot and extracted as an ice core air sample.

DESCRIPTION: δ13C(CH4) δD(CH4) δ15N(N2O) δ18O(N2O) δ15N(NO+

‰ vsVPDB ‰ vsSMOW ‰vsN2 ‰ vsSMOW fragment)
‰vsN2

Reference air −48.68±0.08 −107.4±2.3 6.91±0.10 43.14±0.21 −0.63±0.60
(NAT332) measured
directly on the IRMS

Reference air −48.55±0.18 −104.3±2.8 7.09±0.51 43.68±0.79 −0.11±0.32
(NAT332) measured
via extraction system
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Table 2. System reproducibility. Five samples of similar ice were measured for each test.
For each isotope signature, the first line gives the reproducibility for the minimum amount of
ice necessary for reliable measurements and the second line gives the reproducibility for our
preferred conditions, which is a trade-off between high precision and possible high temporal
resolution.

Stable isotope Gas Ice amount (g) 1σ-
amount 600–700 ppb for CH4 reproducibility

(ng) 220–270 ppb for N2O (‰)

δ13C(CH4) ∼14 ∼200 0.31
∼42 ∼600 0.18

δD(CH4) ∼21 ∼350 2.9
∼42 ∼600 2.1

δ15N(N2O) <10 ∼350 0.92
>17 ∼600 0.51

δ18O(N2O) <10 ∼350 1.08
>17 ∼600 0.69

δ15N (NO+fragment) <10 ∼350 1.63
>17 ∼600 1.12
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Table 3. Intercomparison of measurements made at IMAU with the new system and at other
labs for air samples (six first lines) and ice samples (three last lines) .1 sigma standard de-
viations from N-measurements are presented between brackets. All data are referenced to
V-SMOW for δD(CH4) and V-PDB for δ13C(CH4).

Sample Sample ID N δ13C(CH4) (‰) δ13CIMAU−δ13Cex lab δD(CH4)(‰) δDIMAU−δDex lab

type (CH4 mix. ratio) IMAU Ext. lab Ext. Lab IMAU Ext. lab Ext. lab

Firn air IMAU724 >6 −48.66 −48.96 0.30 ‰ −75.8 −89.6 13.8 ‰
(Dome C) (1604 ppb) (0.18) (0.21) PSU (0.4) (2.5) PSU

Firn air IMAU402 >6 −47.49 −47.78 0.29 ‰ −67.8 −78.9 11.1 ‰
Dome C (1701 ppb) (0.12) (0.13) PSU (1.9) (1.3) PSU

Firn air IMAU490 >6 −47.32 −47.57 0.25 ‰ −83.9 −95.3 11.4 ‰
Svalbard (1821ppb) (0.14) (0.11) PSU (0.8) (1.7) PSU

Ambient NAT325 >50 −47.24 / / −88.3 −89.4 1.1 ‰
air (1970 ppb) (0.18) (2.2) (1.7) BERN

Ambient NAT332 >50 −48.68 / / −107.4 −106.3 −1.1 ‰
air (2141 ppb) (0.08) (2.3) (1.2) BERN

Enriched IMAU403 >6 −28.60 −28.11 −0.49 ‰ +23.5 +15.1 8.4 ‰
air (1906ppb) (0.02) (0.07) PSU (0.4) (0.4) PSU

Ice B30 >6 −48.44 −48.96 0.52 ‰ −94.9 −94.7 0.2 ‰
Greenland (∼1750 AD) (0.27) (0.16) BERN (2.8) (3.7) BERN

Ice B34 >5 −46.46 −46.57 0.11 ‰ −80.5 / /
Antarctica (∼250 AD) (0.21) (0.13) AWI (3.1)

Ice WDC05A 6(13C) −47.10 −47.61 0.51 ‰ −75.9 −88.3 12.4 ‰
Antarctica (∼1550 AD) 2(D) (0.08) (0.30) PSU (2.8) (4.0) PSU
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Fig. 1. Schematic set-up of the analytical system. The extraction system in the shaded box in
the center consists of a glass line (12 mm o.d.) with manual valves. The connection between
this glass line and the ice grater is made via a piece of flexible stainless steel bellows tubing.
T1, T2 and T3 represent, respectively, a water trap, a CO2/N2O trap and a Hayesep trap where
CH4 and air are adsorbed. V1, V2 and V3 represent multiport two-position Valco valves.
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Fig. 2. Grating of twenty-two ice core samples of different length and different shapes at various
frequencies and shaking angles (a). “a” is the angle between the horizontal plane and the cross
section of the SS pot. The error estimate (smaller than the data-points) includes the error of
the scale and the spread from repeated tests.
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Fig.3:	
  Results	
  from	
  linearity	
  tests	
  for	
  N2O	
  isotopologues	
  carried	
  out	
  twice	
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Fig. 3. Results from linearity tests for N2O isotopologues carried out twice a week during one
month. Various amounts of reference air were introduced directly to the N2O IRMS system.
Zone A corresponds to peak areas where the small ice core samples of B30 were measured
(350–480 g). Zone B corresponds to the “optimal zone” where larger ice samples (∼500-700g)
are measured. Zone C corresponds to standard reference air measurements. (a) δ15N(N2O)
(b) δ18O(N2O) (c) δ15N(NO+ fragment).
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Fig. 4. Results from linearity tests for CH4 isotopologues carried out twice a week during one
month. Various amounts of reference air were introduced directly to the CH4 IRMS system.
Zone A corresponds to peak areas where the small ice core samples of B30 were measured
(200–350 g for δ13C and 350–480 g for δD). Zone B corresponds to the “optimal zone” where
larger ice samples (∼500–700 g) are measured. Zone C corresponds to standard reference air
measurements. (a) δ13C(CH4) (b) δD(CH4).
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Fig.5:	
  N2O	
  isotope	
  results	
  of	
  three	
  air	
  cylinders	
  measured	
  at	
  IMAU	
  and	
  CIC.	
  a)	
  769	
  
δ15N	
  b)	
  δ18O.	
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Fig. 5. N2O isotope results of three air cylinders measured at IMAU and CIC. (a) δ15N (b) δ18O.
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